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Computation of Modified Bessel Functions 
and Their Ratios* 

By D. E. Amos 

Abstract. An efficient algorithm for calculating ratios r,(x) = I,+i(x)/1I(x), v > 0, x > 0, 
is presented. This algorithm in conjunction with the recursion relation for r (x) gives an 
alternative to other recursive methods for Ih(x) when approximations for low-order Bessel 
functions are available. Sharp bounds on r,(x) and l(x) are also established in addition to 
some monotonicity properties of r,(x) and r,'(x). 

Introduction. Olver's uniform asymptotic expansion ([1], [11], [12]) in the index v, 
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1 r( 2Ut 
Uo(t) = 1, u () = 2 - t2)ut(t) + - j - 5r )uk(r) dr, k > 0, 

in conjunction with backward recursion on 

2v 
I1X (1) I-x)= - Iv(x) + I,+1(x) 

makes the Iv(x) Bessel function easily calculable for v > 0 and x > 0. Other approaches 
([6], [7], [10]) use backward recursion on (1) directly or indirectly in the form 

2 = 1 
__r i_ _+_I 

(2) ^ 1 2v/x + r, v I^(x) 

to generate approximations for the ratios 

r,+k(X) = I.+k+1(X)/I.+k(X), a = V - [v], k = 0, 1, * , [v], 

where [v] is the integer part of v and 0 ? v - [v] < 1. The identity 
El, 

(3) I^(x) = Ia(x) II r^_k(x), a = v- [v], 
k=l 

is then applied when Ia,(x) is known. When Ia,(x) is not explicitly known, a normalizing 
relation [6] 
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I (x) + 2 a, (a + m)P(m + 2a) Ia+m()=_ (x/2)ae' 
m=1 m! r(1 + 2a) r(a + 1) 

in the form 

(4) Ia(x) = (x/2)aez/r(a + 1) 
1 + 2 (a rn! + 2a) IjI ra+mk 

(1 r + 2a) k1 

is commonly used (Miller algorithm). However, each product in the denominator 
of (4) is monotone increasing in x. In the evaluation of (4), the number of terms of 
the series must therefore increase with increasing x to satisfy a given error criterion. 
In contrast, Olver's expansion in reciprocal powers through V9 can be used for v > 20 
for relative errors [11] on the order of 10-12 or better. 

The main result of this paper is an algorithm for rapid evaluation of ratios r,(x). 
This result for the index v - 1, in conjunction with (2) and (3) for indices v - 2 to 
a = v - [v], provides another way of calculating Iv(x) Bessel functions when Cheby- 
shev expansions or rapid approximations for low-order Bessel functions Ia,(x) are 
available. One cannot proceed with increasing indices because (1) and (2) are numeri- 
cally unstable with forward recursion. 

Sequences are generated by means of Ia+k+l = r,+kI,+k, k = 0, 1, 2, * , N - 1, 
after the ratios rc +k have been calculated. On the other hand, if cne computes I, from 
Olver's expansion, then Il = raIl and (1) can be applied in a backward fashion 
for the sequence I'+k or some lower-order Bessel function. Olver's expansion is also 
convenient from a programming point of view because the leading term can be tested 
for both over and underflow. Scaling by exp (-x) can be incorporated easily by 
altering only the leading coefficient, 

=exp{v[+ + 
(1+ z2)1/2 

+ in 1 + (1 + Z2)1/2]} 

From the point of view of speed, however, a proper implementation might also include 
the power series for Iv(x) when (x/2)2 < v + 1 (17 terms give relative errors better 
than 10-13). 

Asymptotically correct bounds, which approximate r,(x) to maximum errors 
on the order of 1% for v > 2, are also derived. Corresponding bounds on I,(x) become 
available through (3). [3] has applications in which direct ratios are needed. The 
development and convergence proof of the algorithm parallels that of [2] for the 
iterated coerror function. 

Simple Bounds. We start with Bessel's equation 

(5) Yt +Yv, 2 (x+v)y v > O. x > O. 
x x 

for y,(x) = I,(x) and write it in the form 

(xy,)(Xy,)' = (x2 + v2)yvy,. 

Integration by parts on the right followed by a division with x2y 2(x) produces 
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2 (6) yp2 = 12 
+ 

--2-2 2( ) (Z) dz 

where 

(7) Y (x) _ (x) - 2 L() + 

is deduced from the relation I7(x) = [I,+1(x) + Iv l(x)]. If we replace r,1(x) in (7) 
by its equivalent in (2), we get 

(8) Y,(x) = r,(x) + v/x. 

Now, (6) shows that 

r,(X) + V 
= Y'(x) _ (1 + V2/X2)1/2 

x 

and 

r (x) < _V + (1 + v2/x2)1/2 + x 

On the other hand, replacement of r, in (2) by this upper bound yields 

I 
> 

I _ 

2v/x + r, = v/x + (1 + V2/x2)112 v + (X2 + V2)1/2 

These, with a shift of index, produce the bounds 

< x _ < (x) < x <1 
(9) 1V + + (X2 + (V + 1))1/2 v + (X2 + ,2)1/2 

x ? 0, > 0. 

Another shift of index gives the monotonicity and separation properties 

v+ + (x2 + (v + 1)2) = 

Iterative improvement yields a new upper bound 

1 <1 
-l 2v/x + r, = 2v/x - (v + 1)/x + (1 + ((v + 1)/x)2)1/2 

< - 

V- 1 + (X2 + (V + 1)2)1/2 

or, with a shift of index, 

(11) V + 1 + (X2 + (V + 1)2)1/2 V rV(x)-v + (X2 + (v + 2)2)1/2w 

x _ 0, v 0. 

Improved Bounds. Certain second-order differential equations can be converted 
to Ricatti equations by means of a simple substitution. The substitution for (5) is 
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YX(X) = Yv/YP = Iv(x)/Iv(x) 

and (5) becomes 

y, = 1 + V2/X2- Y/X _ y2 X>O.V-O 

or, in view of (8), 

(12) I= 1 -(1 + 2v)r^/x - ra. 

In order to make effective use of these relations, we derive some simple inequalities. 
We start with (5) and form 

F [Yv(ZYv+?)' - Yv+?(ZY,)'] dz = (2v + 1) F f Y + (Z) dz 
0 Z 

for indices v and v + 1. Green's theorem integrates the left side to yield 

z[yyt+, 
- yj,+Iy] Il = (2v + 1) f YPYP+i dz, V > 0, 

which produces 

Y +1(x) - Y1(x) - f ( dz, X > O. 

This shows that 

(13) Y1+1> Y, forx>0. 

On the other hand, the logarithm of r, gives In r, = In I+ - In I, and differentiation 

produces 

(14) 4/r, =- Y+ Y- = r- - r, + 1/x. 

Applying (10) and (13) to this relation, we get 

(15) 0 < r4(x) < rv(x)/x, x > 0. 

This shows that r,' must be positive, and (12) shows that this can only happen if 
r, lies between the roots of 

1 - (2v + 1)t/x -t2 = o 

The larger root gives the upper bound in 

0 < rv(x) < + + (+ 2) 1 + (X2 + (V + 1)2)1/2' 

Iterative improvement with (2) gives a lower bound 

( v + 1 + (x2 + (v + 3)2)1/2 < rr(x) 

(16)22 

V + 2 + (X + (V + 1)2)1/2 X > 0 V > 0. 

Further improvement helps, but the expressions become more complicated. These 
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botinds together with (2) can be used numerically to generate pairs of bounds -by 
backward recursion. The continued fraction developed from (2) leads to bounds 
which are rational function approximations to r,(x). 

The upper bound in (16) is clearly an improvement over the upper bound of (9) 
of the previous section. Because the lower bounds in (9) and (16) were obtained in 
the same manner, one also expects the lower bound of (16) to be sharper than the 
lower bound of (9). However, the upper bound of (16) is only an improvement on 
the upper bound of (11) when (v + 1)(2v + 3) < X2/4. 

If we apply (15) to (12), replacing r, by xr,', we get an improved bound on r,'(x), 

vP + 1+ (x1 + (v + 1)2) rx) 
< 

> O 

A result, which is analogous to one of the main results of [2], 

2 
Iv - Iv+i < 0 > O. 

follows from the definition of r, and (10). 

Bounds on I,(x). If we let C, and D, be lower and upper bounds of the preceding 
sections, 

C,,(x) _ r,,(x) _ D(x), 

I,(x) can be bounded in the form 

*v [V]1(X) II Cv,-k(X) <_ IV(X) <_ Iv,-[V](X) II Dv-k(X)l v > 1. 
k=1 k=l 

[1, p. 362] displays some simple bounds while [8] gives rational function bounds 
for I, suitably normalized. 

The following derivation adds bounds which are quite sharp and have correct 
asymptotic behavior in one or more of the directions x -* 0, x -* o or v -* . We 
start with (8) and the definition Y,(x) from (7), 

IV/I, = r,(x) + v/x. 

This is integrated between z and x for 

In [Ih(x)/Iv(z)] = f rM(t) dt + v ln(x/z) 

or 

(17) I,(x) = (x/z)vI,(z) expaf r,(t) dt} 

The bounds are obtained by replacing r,(t) by the upper and lower bounds of (16). 
The result is 



244 D. E. AMOS 

U(x, Z. V) 

=()IV(Z) exp 
Wx + b 2)1/2 + (Z 2 + b2)1/2} x D"(z)] z _ x, 

L(x, z, v) 
P ~x 2- z 2[DV(X) v12 

(jz) {( + a 2)2 + (Z2 + a )1/ x CV(z) 

a = v + 2,b = v + 1, D ,(x) = (X2 + 2)1/2 CJ(X) = b x2+a)/ 

exp2 bb)1/21L bI a21 

with U and L interchanged for x < z. If z O.- 0 (I17) and (I18a) reduce to 

L18c) U(x, z, v) = [C^(x) l/ 

() 2 (V + 2 lC+) 2) +1/2 

-I8b U~i(z'0 ) =x( + X f -z 1/(x1 Dx] +1 2 

a2)" + (z + a)L ~(' 

DY~x)=b?(2?b21/2 C()+(+2)7 

wBit a Le ichanged for1xw < i z If ze boud , (17)elnd( )e to( 

I(X ox) = (x/22Y _fpx) 
P1/ 

obtained. Another form which leads to an infinite product is derived by integrating (14) 
expII r(t)X 

In [rv~x)1rv~z)]= r,+,(t) dt - r, r(t) dt + In (x/z) 
and recurring to obtain 

r() dt =E In] + Ir++l(t) dt, N d t. 

Then, this integral in (17) gives 

LJx, IJ) b exp r0+N+l(t) dt=+ 

The exponential term can be taken from (I8a) with v replaced by v + N + y for 
upper and lower bounds which are arbitrarily close if N is large enough and rv+k is 

computed according to the procedure outlined in the Introduction. 

Computation of ra(x) and bi(x). The motivation for the computational pro- 
cedure follows by manipulating (2) into the form 

t(rf+llr[)rv + 2(v + fl x]rN = N 

and solving the quadratic equation for ro, 



MODIFIED BESSEL FUNCTIONS AND THEIR RATIOS 245 

(19) 
= ~ + 1 + (R +1X2 + (V + 1)2)1/2 

R R =+1 = 

Here we use the lower bound of (16) for an initial approximation, 

0 X 

(20a) rY+k =V + k + + ((V + k + )2 + X2)1/2 

k 0, 1, 2, , N, 1, 

and form iterates from (19), 

Rv+k+l = r,+k+l/r,+k 

(20b) rm+1 X 
(2Gb) rYP+k i' + k + 1 + ((v + k + 1 )2 + X ''+k+) 

k = O. 1, 2, Be ., N - m -1, m = O 1, *,N- 1. 

The iteration diagram is shown in Fig. 1. 

r,+k, k = O 1, I ., N 

Approximate X X 
values of r,, r* 
m = O. 1 ,** N 

FIGURE 1 

r2m is the approximate value of r,. Since an iteration is a backward sweep along the 
lower diagonal, only two successive diagonals need to be stored during computation. 

The convergence proof below shows that the columns of Fig. 1 converge to the 
appropriate quantity as N -? c. The algorithm can be terminated by comparing the 
entries rv+N-l and rN by means of the formulae 

dv 1 
N 

Id -r' 
< 2(v + 1 )/x + rV +1 r 
< 

for an approximate relative error e. That is, dvN would be r N if rv+JNl were exact. 
In cases where rvN and rv+iNl increase monotonically as N -? c, d7v is an upper 
bound on rv, rvN is a lower bound, and e is a rigorous relative error. The convergence 
for v < 10 with values of x in the range 1-20 was slow but for v > 10, N was 4 or 
less for at least 8 significant digits. It is therefore recommended that for v < 10 the 
index be increased by an integer K so that v + K _ 10, and r K be generated. (2) can 
then be used to get values for indices less than 10. 

To calculate Iv(x), we generate rvi1(x), recur backward with (2) and evaluate (3) 
when Iv v. (x) is available. References [4], [5] and [9] contain Chebyshev expansions 
of high accuracy for v- [v] = 0, I, 1, 2, 2, 2, 1. Results of modest accuracy are also 
given in [5] for -1 ? ? 1 and x ? 8. The asymptotic expansion for Iv(x) suffices 
for corresponding accuracy for -1 ? v? 1 and x > 8. Olver's expansion as described 
in the Introduction can also be used to generate Iv(x). 

With more recent machines, the computation of a square root is on the order of 
three divide times. Each iteration of (20b) therefore results in only a few microseconds. 
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Since computer multiplications require significantly more time to execute than addi- 
tions or subtractions, squaring of the indexed quantity (v i k + 1) can be reduced 
to additions and subtractions by means of 

yo = (v + 1), uo =v +1, 

Yk+1 = Yk i Uk i Uk + k 0, 1, 2, 
1= k = 1, 

where Yk = (v i k + 1)2 and Uk = v i k + 1. The plus sign is used for rv+k0 along 
the first row of Fig. 1, while the minus sign is used during the backward sweep along 
the diagonal of Fig. 1. 

For the numerical experiments, the algorithm was compared with backward 
recursion utilizing (2). For example, r10(100) was calculated from (2) with rlO+k(100) = 

0, rlO+k(100) = upper bound of (16), and r10+k(100) = lower bound of (16). For a 
relative error E = 5 X 10-9, k had to be at least 36, 28 and 26 respectively. The algo- 
rithm met the error requirement at N = 6 (6 applications of (20a) and 15 applications 
of (20b)) producing 10 significant digits. The corresponding computation for r10(500) 
produced the numbers k = 90, 62, 62 and N = 4 respectively. Other experiments 
repeated this trend where the differences between the two methods became increasingly 
apparent as x exceeded 2v. The experiments also showed the methods to be com- 
parable in terms of the number of equivalent multiplications or divisions when x was 
small compared with v. The backward recursive approach was superior for inter- 
mediate values of x and 10 ? v _ 70. However, the algorithm performed uniformly 
better for v > 70, giving N < 4 when E = 5 X 10-9. The comparisons above utilized 
the optimal value of k for a given (E, x) pair. In practice, an algorithm constructed 
from (2) may not perform as well since the optimal value of k in rv+k(x) is not known 
a priori without a parameter study. The algorithm, while terminated in a nonrigorous 
fashion, always produced the accuracy requested. Rigorous termination is possible 
by utilizing the upper and lower bounds constructed in Theorem 2 below. 

Convergence of the Algorithm. We first show in Theorem 1 that an algorithm 
formed from (20b) with rv+k' given by the lower bound of (11) converges as N -? co. 
Theorem 2, which contains the corresponding results for (20a) and (20b), follows 
because the initial approximation rv+k' is sharper than that of Theorem 1. 

THEOREM 1. If x ? 0 and v _ 0, the sequences rv+k generated by (20b) with 

v+k = 
(v + k + 1) + ((v + k + 1)2 + 2)1 ' 

k 1, . 

converges to rv+k as m -? o for each k ? 0. 
For the proof, we write (19) and (20b) in the form 

1 
r+k = v k + +1((v+ k + 1+ 2 

+ 1+rk+l2 

(21) X X rX+k 

m+1 1 

v + k + 1 ((v + k + )+ r+k+l 

x \ x / rv / 
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and consider x > 0 since r,+k(0) = r,+k0(0) = 0. The proof consists of constructing 
sequences of upper and lower bounds on rY+km which converge to rV+k. Let 

(22) x = (( 1 1) 

Then, since Cko is a lower bound, (2), with a shift of index, yields an upper bound 

(23) Dk = 
2(v + k + I)/x + Ck+1 

on r,+k. Then, 

(24) D0 > rv+k > ro+k = Cko 

Substitution of these bounds into the expressions rV+k+l/rV+k and rV+k+l0/r,+k' yields 

Ck_ < r D+k < and 
C ,+ < +k+l< D_+_ 0 0 0~-a < 0 D r,,+k Ck Dk r,,+k Ck 

These bounds can be used in (21) to replace rV+k+l/rV+k and rV+k+l/rV+k under the 
square root. Then, for m = 0, DkI > rv+k > CkI and Dk' > rV+kI > Ck' where 

Il - I 
V + k + 1+((V + k + 1 2 

+ + Db + 2 
l) and 

(25) X \ x/ D Dk 

1 1 
Ck i'+ k+ 1 + ( ?k?+ 1)2+1)0) 1/2 

Continuing in this way, we can inductively construct sequences of bounds Dkm and 
Ckm on rk and rkm. However, convergence is obtained by showing monotonicity of 
each sequence. Thus, for m = 0 we need to show that 

Ck _ CO and Do > D. 

Ck1 > Ck0 follows from the result 

D? v+ k + I ( + k + 1 2 + )1/2 

Dk+1+1+ 
Ck 2(v + k + 2) + 

X~k+ __+ Ck+2 

(26) = ^~~~~ + k + I +( + k + 1 2 )1/2 x 'A 
(26)= 

2(v+k+2) _v k+ 3+ ((v)k+13)2 1/2 

<1 V + k + 1 + ((v + k +31)2 + i)1/2 v + k + I + (V+ k + 32 ,r+4/ 
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since Dk+l0/C,? replaces 1 under the square root in the expression for C ? = 
r, 

0. For 
Dk? 2 D,' we have 

D1 = 1 
( v + k +1 (I + k+ \ l 2(v + k + 1))f"2 
(27) X ~~ i + Ck+1ICk+l + II 

2(v + k + I)/x + Cko+1 D 

To summarize for m = 0, we have 

(28) D = D > r,+k > Ck > Cko and Do = D' > rl+k > Ck > Ck 

Now we repeat the induction steps between (24) and (25) for m = 1. Thus, (28) 
applied to r,+k+l/r^+k and r^+k+ll/r^+kl yields 

Ck+< r,+k+l Dk+1 and l r,+k+1 Dk+1 
1 < < 1 and - 1 < 1 < 

Dk r Ck Dk r Ck 

These expressions with (21) give new bounds Dk2 and Ck2, 

Dk > r,+k >Ck2 and Dk > r,+k > Ck 

where 

v + k + I +(v+ k + 1)+Ck+l) 1 

and 

v + k + I + _ _(V + k + _ 
2 

Dk+ 
1 

But (28) shows 

Ck+ C~1 Dk+1 Dk+1 
D1 > D and 1< C 

Dk Dk Ck .- Co 

and it follows that 

Ck > Ck and D2 < D'. 

Thus, for m = 1 we have 

D5k = Dk > D > r, + k > Ck > Ck > Co 

and 

D5k = Dk > Dk > rp +k > Ck > Ck > Co 

forx > 0. 
Continuing in this way, we compute inductively a sequence Dkm which is bounded 

and monotone decreasing, and a sequence Ckm which is bounded and monotone 
increasing with r,+k and r,+km between these bounds. Each sequence therefore has a 
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limit Dk and Ck such that 

Dk = 2 1 
v + k + 1 +(v + k + 1\ 

+ Ck+l\ 

x \\ x / Dk/ 

Ck=1 
v + k k I _ _+ _ 

2 
Dk+__ 

Solving for each of these square roots and squaring gives 

1 C1 

D (v = k + I~lx + C ~ Ck 2(v + k + 1)/x + Dk+1 

Elimination between these expressions yields 

Dk = 1 

2(v + k + 1)/x + 2(v + k + 2)/x + Dk+2 

1 
Ck = 1 

2(v + k + 1)/x + 2(v + k + 2)/x + Ck+2 

Each of these leads to the continued fraction for r,+k which can be developed similarly 
by repeated application of (2). Therefore, Dk = Ck = r,+k and r,+km converges 
to r^+k. 

THEOREM 2. If x > 0 and v > 0 the sequences r,+km generated by (20a) and (20b) 
converge to r,+k as m -- o for each k > 0. 

Again we observe that r,+k(O) = r+k (0) = 0 and consider x > 0. In the proof of 
this theorem, we construct bounds Ckm and Dkm in a fashion analogous to those of 
Theorem 1 and compare these bounds with those of Theorem 1. We first note that 
Ck = r^+k of (20a) is a better approximation to r,+k than Cko of Theorem 1. That is, 
r,+k > Cko > Cko for x > 0. We also have from (2), with a shift of index, an upper 
bound Dk, 

D?- ~~1 _1 _D 
2(v + k + 1)/x + Ck+l 2(v + k + 1)/ +Ck+l 

on r,+k. Thus, for m = 0 we have 

(29) Ck < Ck = rok < rv+k< D < Do. 

It follows therefore that 

Ck+< C1 +< rp+k+l Dk+< Dk+1 
0 < Do<<0 < 0~ 

Dk Dk r, +k Ck Ck 
(30) 

Ck+1 C?+< r,+k+l Dpk+1 < Dk+1 
0<< <O <<0 < 

Db Db r,+ k Ck Ck 

We define 
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V + k + 1 + ((V + )2 % )1/2 and 

'01 = I 

v + k + 1 + ((V + k + 1) E CO)1/2 

The fact that these are bounds on r,+k and r,+k' follows from (21) and (30). Then, 
comparing the expressions in (21), (30), (31), and (25) for m = 0, we have 

C < Ck < r,,+k < Dk < Dk 

Ck <C <r+k < D k < Dk. 

Now, r,+k and r,+k' are in the same relative positions with respect to the C's and 
D's for m = 1 as r,+k and r,+k0 were for m = 0 in (29). We therefore inductively 
compute 

(32) Ck +k <D < Dm m = 1, 2, 
Ck < Ck <rm k < Dk < k 

But in Theorem 1 it was shown that both Ckm and Dkm converge to r,+k. Therefore 

r,+km as well as Ckm and Dkm converge to r,+k as m -+ c. 
Because the initial approximation to r,+k is sharper in Theorem 2 than that of 

Theorem 1, one expects fewer iterations for a given accuracy. Numerical experiments 
show this to be the case. 

Notice that the proof of Theorem 2 implies that an algorithm based on (20b) and 
started with any lower bound which is an improvement over (11) (e.g., (16)) converges 
to r,+k. Hence 

THEOREM 3. If r,+k > r,+k = x/(v + k + 1 + ((v + k + 1) + x2)"'), x > 0 

and v > 0O then the sequences generated by (20b) converge to r,+k as m - o for each 
k ? 0. 
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